

Introduction **Dual Mechanism/Dual Route Models**¹⁻⁴**:** two routes for the processing of morphologically complex words. - Regular forms: rule-based computation - Irregular forms: retrieved from mental lexicon **Frequency effects as a diagnostic of storage**¹: Irregular forms are subject to frequency effects: faster reaction times (RTs) for high-vs. low-frequency forms. Regular forms generally show no frequency effects. **Declarative/Procedural (DP) model^{3,4}** Learning, storage, and processing of language relies on: - Procedural memory (PM): - Rule-governed aspects of language: combinatorial grammar, regular phonology -<u>Morphology:</u> regular forms - Declarative memory (DM): - Idiosyncratic aspects of language: simple words, irregular phonology, idiosyncratic grammar -<u>Morphology:</u> irregular forms (and chunked (high-frequency) regular forms) **German Plurals** - German nouns take one of five plural affixes: -Ø, -(e)n, -e, -er, -s **Tripartite distinction**^{1,2}: 1) Default (lexically unrestricted): --s (Auto \rightarrow Autos, 'car'/'cars') - No frequency effects⁵, stem priming effects⁶ \succ Computed online: Auto + -s 2) Non-default predictable (lexically restricted): - -n for feminine nouns ending in schwa (*Torte* \rightarrow *Torten*, 'cake'/'cakes') - Frequency effects⁵, stem-priming effects⁵ Stored with internal structure: [{Torte}{-n}] 3) Non-default non-predictable (lexically restricted): - -(e)n for non-feminine nouns (Name \rightarrow Namen, 'name'/'names') and non-schwa-final feminine nouns (*Oper → Opern,* 'opera'/'operas') - -er (*Geist* \rightarrow *Geister*, 'spirit'/'spirit') - -e ($Tag \rightarrow Tage$, 'day'/'days') - Frequency effects^{5,7}, no stem-priming effects⁵ Stored as full forms: [Opern] Previous research on language and aging Language processing - Transformations of linguistic abilities (gains and losses) - RTs: longer RTs across the board - Accuracy: Mixed findings (declines, improvements, no changes), depending on task Morphological processing - Most research based on priming studies:

- <u>Regular forms</u>: no changes in priming-effect size⁸⁻¹²

- Irregular forms: priming effects decrease with age⁸⁻¹⁰ One study⁹ on frequency effects with only older adults:

- Regular participles: No changes in frequency effect

- Irregular participles: Size of frequency effect varied frequency effect size increased with increasing

'verbal memory' scores

\succ Selective effects of aging:

- Age-invariant (preserved) combinatorial processing

- Affected (declining?) storage-based processing

Research Question: How does aging affect the production of morphologically complex words?

Predictions:

- No frequency effects for default forms, independent of age - Robust frequency effects for (both predictable forms and nonpredictable)⁵ non-default forms for younger speakers. - Form-frequency effects for non-default plurals might be affected by age: decreasing form-frequency effect size with increasing age (e.g.,
- due to age-related declines in memory skills)

Design

neurological, psychiatric or language-related impairments								
	20s	30s	40s	50s	60s	70s	80s	Effect of age
Count	41	37	18	27	26	11	6	
Sex	24 F,	21 F,	15 F,	20 F,	20 F,	5 F,	5 F,	χ ² (6, N=166)=15.50,
	17 M	16 M	3 M	7 M	6 M	6 M	1 M	p=.017
Education	16.2 (2.2)	18.2 (3.5)	17.0 (3.5)	15.6 (3.4)	16.1 (3.0)	14.0 (2.0)	16.8 (3.4)	<i>r</i> =15, <i>ns</i>
Declarative	0.66	0.70	0.63	0.50	0.53	0.35	0.46	<i>r</i> =46, <i>p</i> <.001
Memory	(0.16)	(0.15)	(0.16)	(0.21)	(0.18)	(0.15)	(0.22)	
Procedural	0.10	0.12	0.02	0.06	0.04	0.00	-0.01	<i>r</i> =35, <i>p</i> <.001
Memory	(0.09)	(0.10)	(0.04)	(0.09)	(0.06)	(0.06)	(0.05)	
Working	5.7	6.0	5.5	4.9	4.7	4.5	4.1	<i>r=49, p<.</i> 001
Memory	(1.2)	(0.9)	(0.7)	(1.0)	(1.0)	(0.7)	(1.0)	
Interference	69	71	79	75	57	51	63	<i>r</i> =08, <i>ns</i>
control	(28)	(27)	(33)	(40)	(31)	(23)	(31)	
Processing	1093	1106	1400	1548	1921	2023	2106	<i>r</i> =.73, <i>p</i> <.001
Speed	(188)	(188)	(320)	(314)	(294)	(231)	(550)	
ART	17 (9)	20 (10)	24 (9)	27 (10)	27 (12)	20 (9)	26 (7)	<i>r</i> =.32, <i>p</i> <.001

Note. Education: in years. Processing Speed: in ms (higher numbers = slower speed). ART: Author Recognition Test (number of correctly identified authors minus incorrectly selected foils; max = 50). Age binned for exposition only, analyses treat age as a continuous factor. Bin "80s" includes data from one 91-year-old participant.

Materials and tasks Materials

140 German singular words:

- 40 default plurals (-s)
- 40 non-default predictable plurals (-*n*)
- 40 non-default non-predictable plurals (10 -er, 30 -n)

- 20 filler items (-*e* plurals)

	Form frequency	Lemma frequency	Letter length	Syllable length	Phoneme length	Age of acquisition
	0.90 (0.92)	1.89 (1.48)	6.8 (1.7)	2.4 (0.7)	6.2 (1.5)	8.1 (2.6)
fault	0.90	1.81	6.8	2.4	6.2	7.1
able	(0.93)	(1.31)	(1.2)	(0.6)	(1.1)	(2.4)
fault	0.94	1.84	7.0	2.3	6.1	7.2
edictable	(0.94)	(1.56)	(1.5)	(0.5)	(1.4)	(2.1)

	Form frequency	Lemma frequency	Letter length	Syllable length	Phoneme length	Age of acquisition
Default	0.90	1.89	6.8	2.4	6.2	8.1
	(0.92)	(1.48)	(1.7)	(0.7)	(1.5)	(2.6)
Non-default	0.90	1.81	6.8	2.4	6.2	7.1
predictable	(0.93)	(1.31)	(1.2)	(0.6)	(1.1)	(2.4)
Non-default	0.94	1.84	7.0	2.3	6.1	7.2
non-predictable	(0.94)	(1.56)	(1.5)	(0.5)	(1.4)	(2.1)

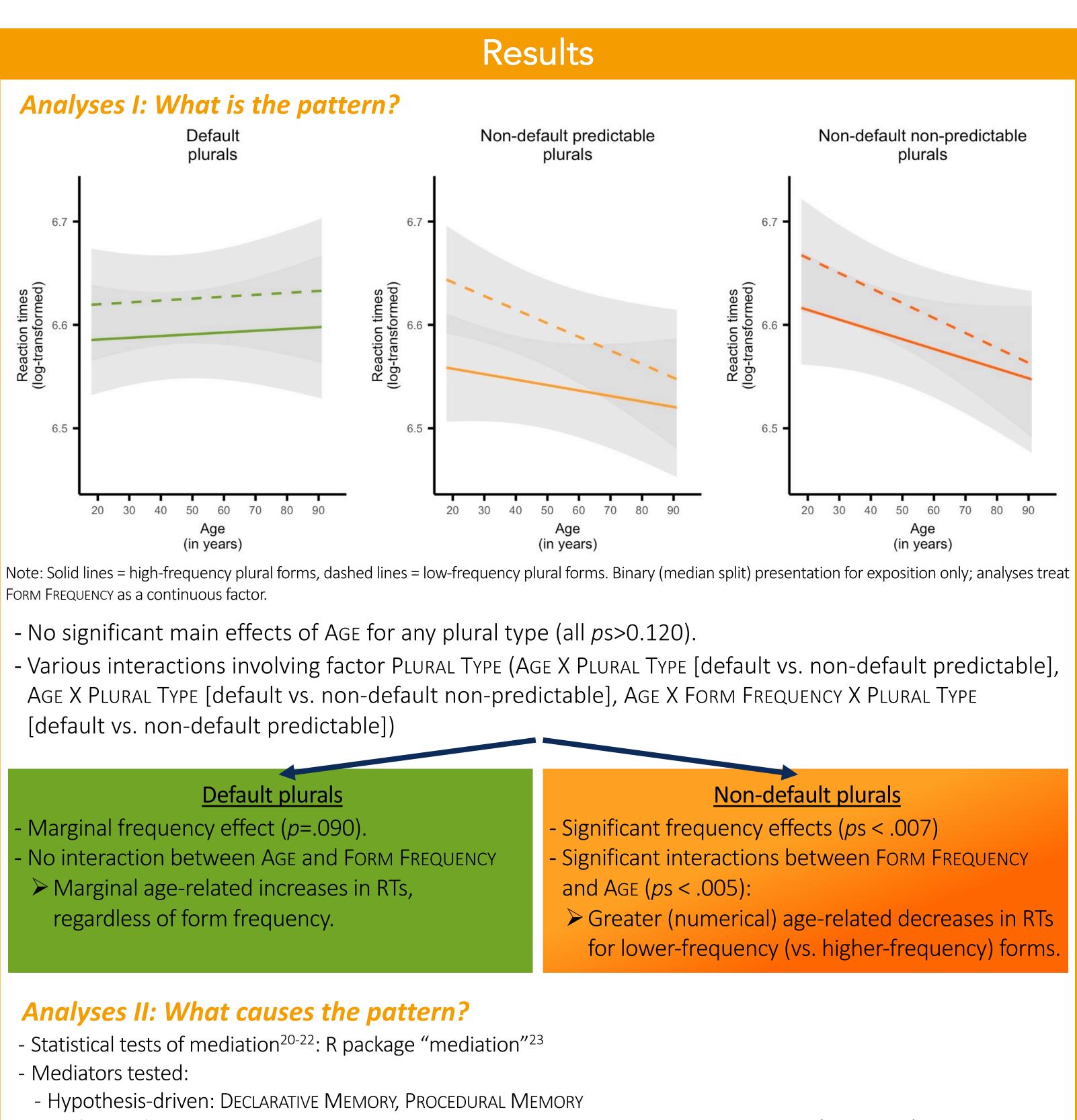
Note. Values refer to target-form properties. Frequency values: natural-log-transformed SUBTLEX-DE frequency¹³. AoA ratings: rating study (*n*=222, age range: 18-67 years).

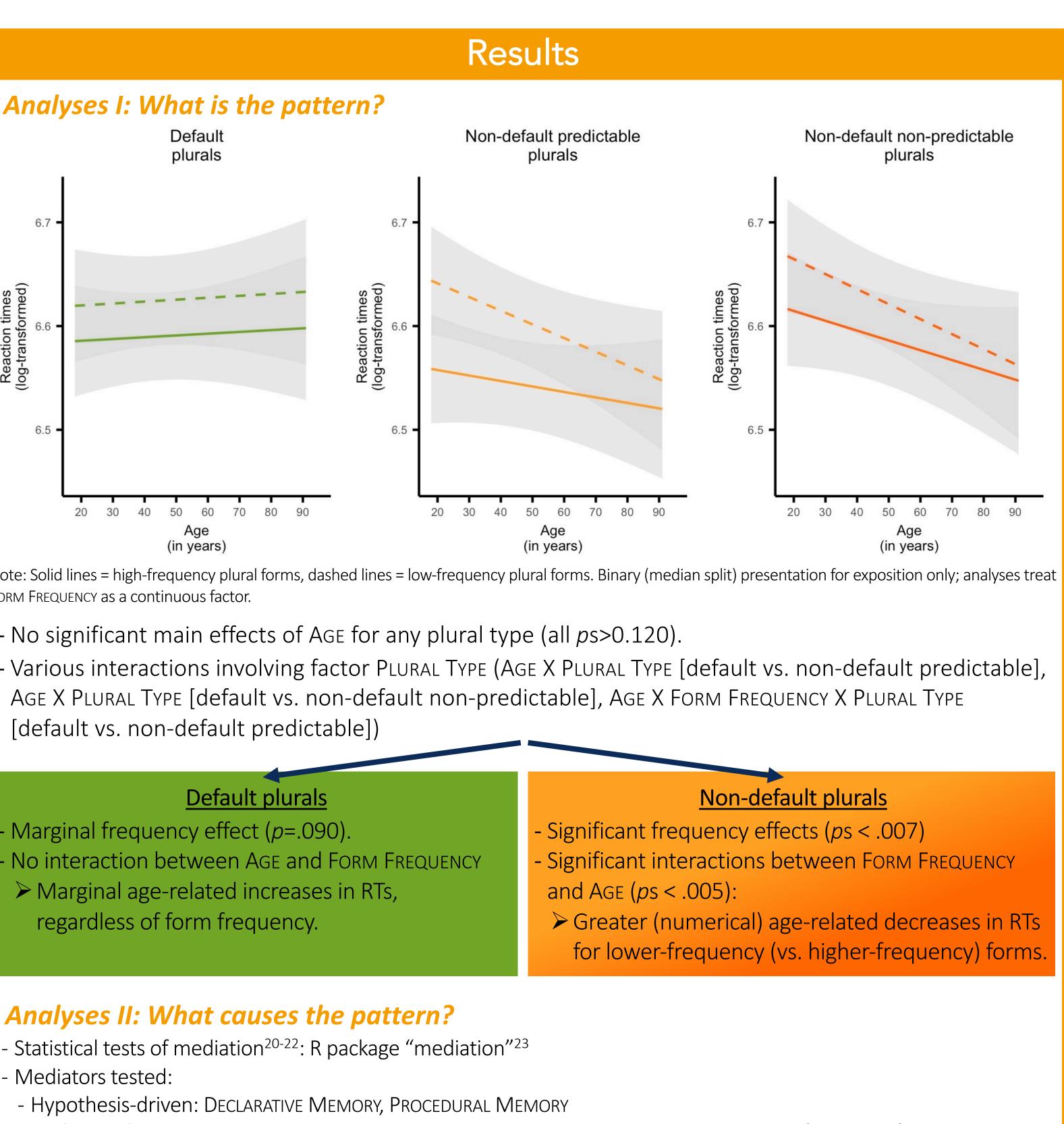
Individual differences tests

- .. Declarative memory: Incidental learning (deep encoding) and recognition of paired associates (depicted objects)¹⁴
- 2. Procedural memory: Serial Reaction Time (SRT) task¹⁵
- 3. Working memory: Corsi block-tapping task backwards¹⁶
- 4. Interference control: Eriksen Flanker task¹⁷ 5. Processing speed: Pattern Comparison task¹⁸
- 6. Reading habits: Author Recognition Test (ART)¹⁹; list of author names and foils. Participants mark those they recognize.

The more you know: Age-related facilitation in the production of irregular morphology

Aleksandra Trifonova¹ & Jana Reifegerste^{1,2}

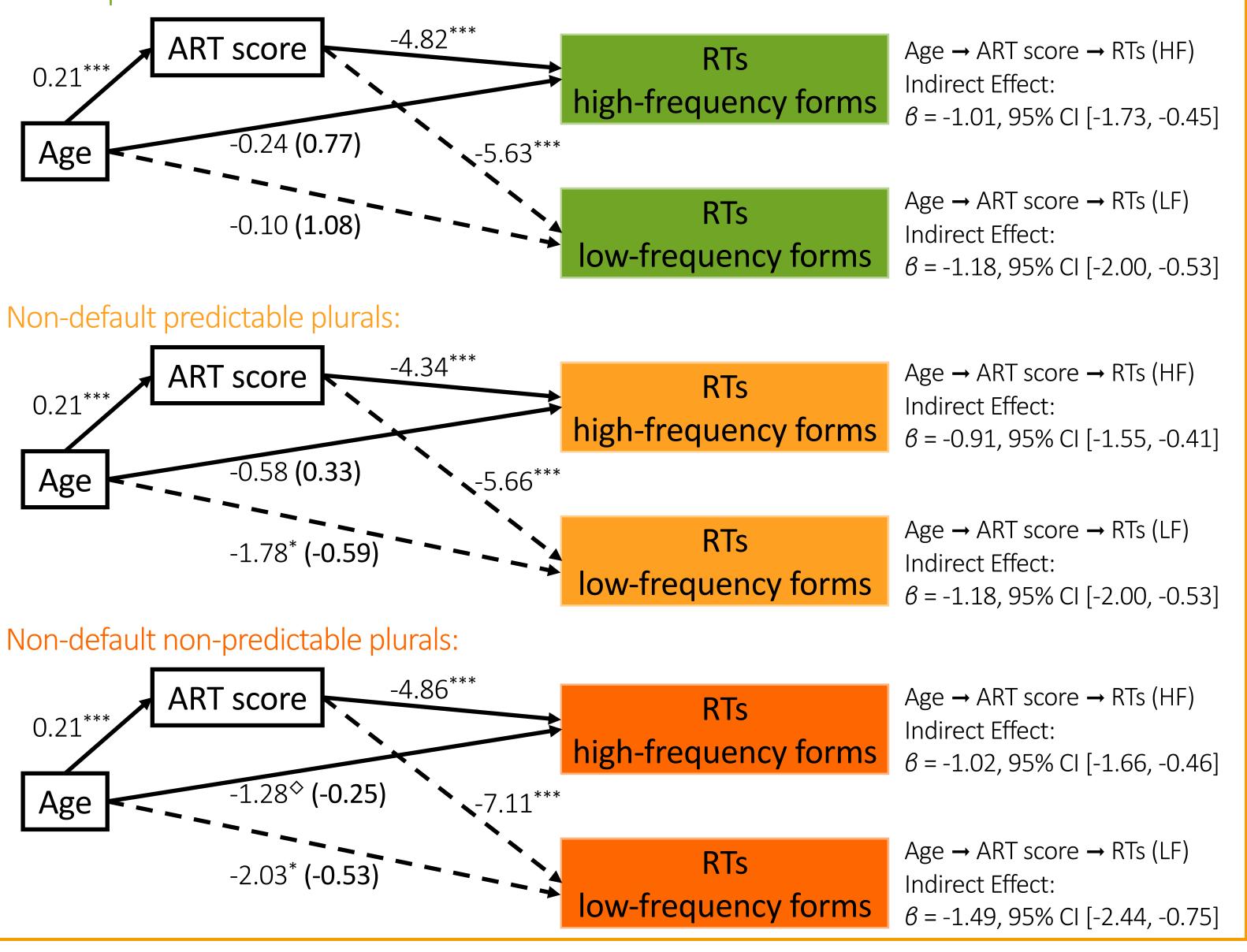

¹Potsdam Research Institute for Multilingualism (PRIM), University of Potsdam, Germany; ²Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington D.C., USA

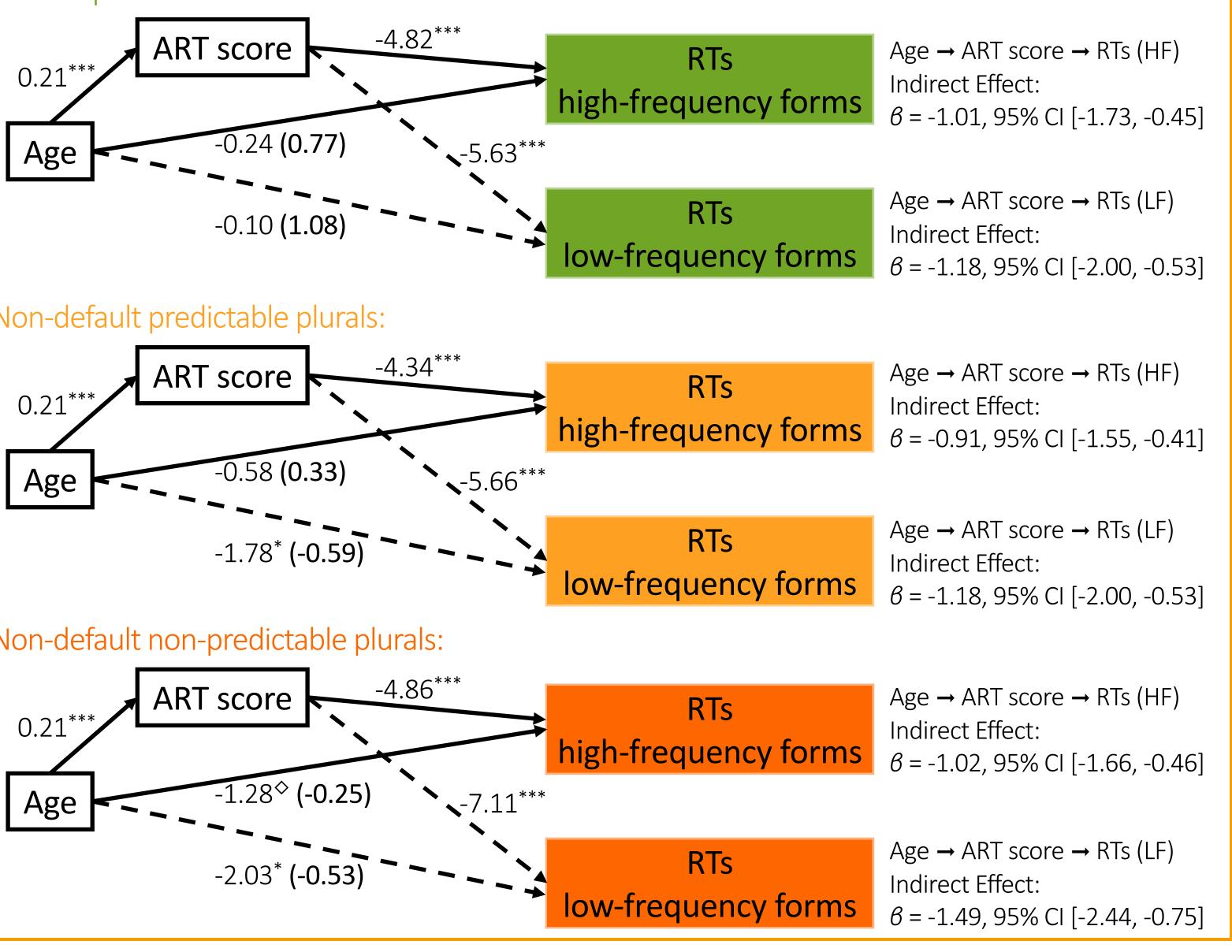

Methods

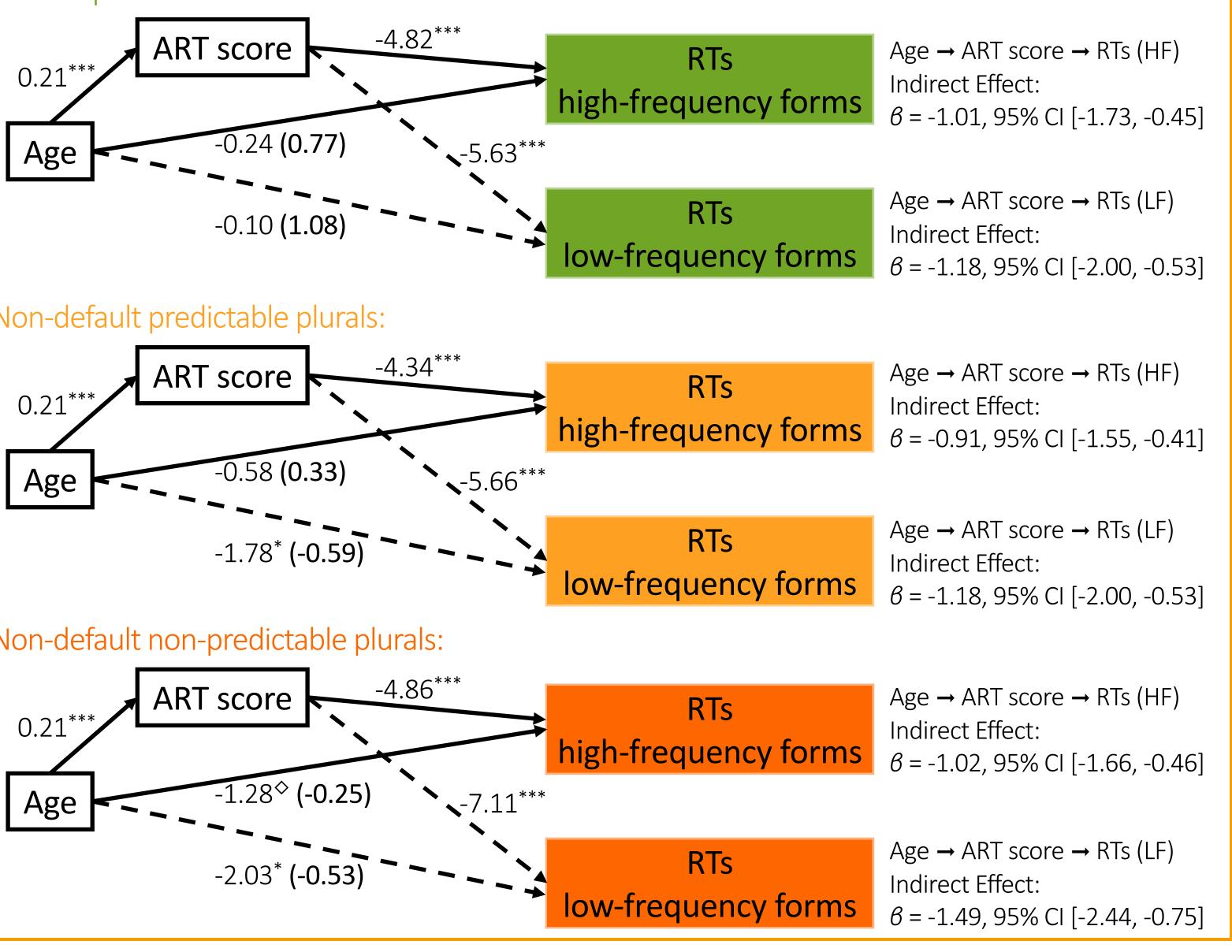
PLURAL TYPE X FORM FREQUENCY X AGE

Participants 166 native German speakers without cognitive,

- 120 target items from three different plural types:






FORM FREQUENCY as a continuous factor.

- Nonparametric bootstrapping^{23,24}(1000 bootstrapped simulations)

Default plurals:

- Exploratorily: Working Memory, Interference Control, Processing Speed, Reading Habits (ART score)

- Only factor that showed mediation effects: READING HABITS (ART score)

Discussion

What is the pattern?

Default versus non-default plurals:

Different processing patterns across participants: - **Default forms:** Only marginal frequency effects

- Non-default forms: Pronounced form-frequency effects
- > Pattern suggests storage-based access of non-default (but not of default) forms

Age effects:

Selective age effects on regular versus irregular forms: Default forms:

- Stable RTs and processing patterns across the lifespan Non-default forms:
- Age-related RT *decreases*, especially for lower-frequency forms
- Patterns held for predictable and non-predictable forms

What causes the pattern?

- ART scores (proxy for written language exposure) mediate effect of Age on RTs for low-frequency non-default forms.
- \succ Age-related speed-up might be due to greater experience with language.
- Screater cumulative frequency of stored forms confers particular benefits at lower end of frequency continuum due to log-shaped effect of frequency on RTs.
- Combinatorial processes (that underlie default plural forms) seemed to be independent of language exposure.

Conclusion

- Different aging trajectories for default and non-default German plurals:
- <u>Default forms:</u> Stable performance
- <u>Non-default forms:</u> Faster responses with increasing age (especially for lowerfrequency forms)
- Prolonged exposure to written language benefits the production of low-frequency non-default forms.

References & Acknowledgements

¹Clahsen (1999) Behav Brain Sci, 22, 991; ²Marcus et al (1995) Cogn Psychol, 29, 189; ³Ullman (2001) Nat Rev Neurosci, 2, 717; ⁴Ullman (2001) J Psycholinguist Res, *30,* 37; ⁵Sonnenstuhl & Huth (2002) *Brain Lang, 81,* 276; ⁶Sonnenstuhl et al (1999) Cognition, 72, 203; ⁷Clahsen et al (1997) Theoretical Linguistics, 23, 201; ⁸Reifeger ste & Clahsen (2017) *Mental Lexicon, 12,* 342; ⁹Clahsen & Reifegerste (2017) Bilingualism: A Framework for Understanding the Mental Lexicon, 217; ¹⁰Reifegerste (in prep) Morphological processing across the adult lifespan; ¹¹Reifegerste et al (2019) Biling Lang Cogn, 22, 425; ¹²Royle et al (2019) Front Commun, 4, 16; ¹³Brysbaert et al (2011) *J Exp Psychol, 58,* 412; ¹⁴de Chastelaine et al (2017) Neurolmage, 156, 340; ¹⁵Perez et al (1987) DTIC Doc ADA181697; ¹⁶Corsi (1972) *Memory and the* medial temporal region of the brain; ¹⁷Eriksen & Eriksen (1974) Percept Psycho*phys, 16,* 143; ¹⁸Nissen & Bullemer (1987) *Cogn Psychol, 19,* 1; ¹⁹Grolig et al (2020) *Read Writ, 33,* 1423; ²⁰Dave et al (2021) *Brain Res, 1768,* 147573; ²¹Phillips et al (2015) *Am J Psychiatry, 172,* 124; ²²Samu et al (2017) *Nat Commun, 8,* 1; ²³Tingley et al (2014) *J Stat Softw, 59,* 1; ²⁴Bollen & Stine (1990) *Sociol Methodol,* 115.

Thank you: We are grateful to the members of PRIM for fruitful discussions. We thank Anca Serbanica, Basile Zumbrunnen, Jule Nabrotzky, Lauren Russell, Lea Böhme, and Michael Yao for their contributions to data collection and data pre-processing. **Funding:** Deutsche Forschungsgemeinschaft (DFG; 'German Research Foundation') grant 411781424.

Scan here for the PDF:

Contact:

jana.reifegerste@gmail.com & aleksandra.trifonova@uni-potsdam.de